
2D Vlasov-Poisson Equation by PIC
Algorithm

Javier Palomares

December 14, 2012

1 The Vlasov Poisson Equation

∂f

∂t
+

p

m
· ∇f + F · ∂f

∂p
= 0

I choose to study the Vlasov Poisson equation for my final project.
Although we had already covered this system in class, it was only done in
one dimension. I chose to extend the techniques we saw in class to two
dimensions and take a look at various problems that can be solved.

The Vlasov equation describes the statistical behavior of the probability
density function under the influence of a force F in the absence of particle
collisions. The Vlasov equation is used in systems with number of particles
too large to be modeled by deterministic methods.

The probability density function f(r,p, t) is defined as the density of
particles with position r and momentum p at a time t:

dN = f(r,p, t) d3r d3p

Combining this equation with the Poisson equation

∆φ = ρ

Allows us to compute the central forces between particles by measuring
the mass/charge density. Note that this can only be done for central forces
that can be taken as the gradient of a potential. This cannot be done for
non-central forces such as magnetic ones.

1

2 Numerical Techniques

The PIC (particle in cell) algorithm takes in the initial conditions of the
system and diffuses the mass/charge of each particle symmetrically on a
grid. Doing this allows us to quickly calculate the density of the system at
all times in order to solve Poisson’s equation.

I solved Poisson’s equation with Fourier transforms. If we think of the
density and potential as the transform of some function:

φ(r) =
∫

Φ(k) e2πik·rd3k, ρ(r) =
∫
f(k) e2πik·rd3k

we find that

φ(k) =
1

(2π)3
f(k)

k2
.

This allows us to find the potential by taking the fourier transform of the
density, dividing by −k2, and taking the inverse transform.Fourier transforms
were computed using the numpy library’s FFT function.

Once we have the potential, it’s a straightfoward process to take its gra-
dient to find the forces on particles, (F = −∇φ) and update velocities and
positions using Euler methods or other integration techniques.

I chose to integrate by using Leapfrog integration, where the position is
update by half a time step, the acceleration is calculated and used to update
the velocity, and the position is once again updated by half a time step on
each iteration:

rn = rn−1 +
dt

2
vn−1/2

a =
F

m

vn+1/2 = vn−1/2 + andt

At this stage we are able to model the behavior of a large system of
particles as they interact due to the self-interacting forces such as gravity or
electrical forces.

2

3 Simulations

After implementing the code to solve the general Vlasov Poisson equation, I
took a closer look at particular some particular initial conditions and watched
how they evolve.

3.1 Galactical simulation

It is believed that early in the universe, cold, slow moving particles clumped
together to form celestial bodies. Various cosmological simulations,such as
Eris at the UC Santa Cruz, have looked at this phenomenom. I decided to
look further into this problem.

First, I set up a uniform distribution of 10000 total particles with zero
velocity on a 100×100 grid with periodic boundary conditions. This start-
ing state can be interpreted as diffuse celestial bodies uniformly distributed
throughout space with no external forces. :

Figure 1: Initial(t=0) uniform array of 10000 particles on a grid with periodic
boundaries. All particles were given an equal mass. No external forces were
applied to the system, so the only forces acting on any particle within the
system was the gravitational attraction to other particles. The system was
then evolved in time.

This initial condition has a mean /bf correlation of −3.816× 10−20. This
value is essentially negligible as the particles from a uniform array with no
bunching.

The system was then allowed to evolve in time according to the gravita-
tional forces, and after a long time the systems’ state looked as follows:

3

Figure 2: After evolving for a long time (t=25), the system looks just like its
initial state. This is not an error, as we will see the net force on any of the
particles was zero, so the particles remained stationary.

Once again, the system had a mean correlation of −3.816× 10−20.This is
exactly the same the same conditions that we saw at t=0! Surprisingly, this
does make sense: The probability density is uniform and due to the periodic
boundary conditions, each particle senses an equal force in all directions,
resulting in a zero net force. Thus the particles will stay in this uniform
distribution for all time. We can make sense of this once more if we look
at the potential, which is uniform since the density is uniform everywhere.
Since the force F and potential φ are related byF = −∇φ we see that a
uniform potential leads to a zero force.

I next took a look at an almost identical situation: 10000 particles on
a 100×100 grid as we saw in Figure 1. However, this time I perturbed the
position of each particle by a Gaussian distribution, and now each particle
had a small velocity. Moreover, this time each particle did not have an equal
mass.

This resulted in the following initial state with a mean correlation of
5.47250165596× 10−07.

4

Figure 3: The perturbing distribution had a mean at zero to allow posi-
tive and negative perturbations in the ~x and ~y directions, and a standard
deviation of .0001 (4 orders of magnitude smaller than the grid size). The
velocities in the ~x and ~y directions were also randomly selected from this
distribution.

This time we see a significantly higher initial mean correlation. This is
because by pure chance, the perturbations have pushed some particles closer
to each other. Thus the correlation function, which can be interpreted as a
measure of how bunched up particles are, has increased. However, we still
see that the particles are diffused throughout the entire grid. But if we allow
this system to evolve in time, we begin to see some much more interesting
results:

5

Figure 4: Time: 4.0. Mean Correlation: 1.77943674067 × 10−05. The mean
correlation has increased. The initial state did not have a uniform distribu-
tion, nor a uniform potential, so particles felt net forces causing the particles
to bunch up.

Figure 5: t: 6.0 Mean Correlation: 0.000889370887301. The correlation
is significantly higher now than that of the start state. The gravitational
attraction has brought particles closer to each other.

6

Figure 6: t: 8.0 Mean Correlation: 0.0164899352445. The correlation con-
tinues to increase. The particles no longer diffuse through the entire grid
space.

Figure 7: t: 10.0 Mean Correlation: 0.0360741148919. Particles continue to
attract each other, forming a galaxy

7

Figure 8: t: 12.0 Mean Correlation: 0.0381762366398. The particles have
bunched up into a galaxy. Although not shown here, particles within a galaxy
are not stationary. Although they are bound by the gravitational attraction,
they have nonzero velocities and oscillate about the center of mass, much in
the same way that celestial bodies within a body oscillate about the center
of mass.

As we have seen, with this initial state, the particles are not static. This
is because any time perturbation breaks the symmetry of the system, so the
potential is now never uniform. Therefore, particles experience net forces
until the form a stable galaxy. We are able to quantify the bunching of the
particles by the correlation function. It also important to note that particles
in the galaxy do not approach stationary states. Instead, they find stable
oscillatory paths. This is all consistent with astronomical measurements,
which helps to validate theories about the early universe. However, it is
important to note that the number of particles in this simulation is much to
small to make any claims. The Eris simulation ran 60 million particles for 8
months on a supercomputer.

3.2 Orbits

Next, I decided to take a look at particles orbiting about a fixed point. First,
I set up a system of 1000 particles orbiting about a particle within a range
of radius. I fixed the angular velocity of each particle to remain in a stable
orbit, and gave each particle equal mass.

8

Figure 9: t: 0.0 The particles are given angular velocities in order to stay in
a stable orbit about a central point at (.5,.5)

Figure 10: t: 40.0 We see that the particles stay in orbit about the central
point

I next took the same initial condition and drastically altered the initial
conditions by introducing a particle at the central point with a mass much
more massive than the rest of the particles, leading to a much bigger force
than that keeping the particles in stable orbit.

9

Figure 11: t: 0.0. A much more massive particle is introduced at the center
of orbit, and the system is allowed to evolve

Figure 12: t: 20.0. The much more heavy particle begins to collapse the rest
of the particles towards it

10

Figure 13: t: 30.0

Figure 14: t: 40.0

Figure 15: t: 50.0

11

We see that the introduction of the massive particle collapses the stability
of the particles’ orbits, and after a long time, they begin to oscillate linearly
about the massive particle, practically ignoring the attraction due to other
particles, as the attraction with the central particle is much stronger. Thus
we see that if the solar mass were to suddenly increase, planets would no
longer have elliptical orbits, and instead planets would oscillate to and from
the sun instead of about it.

4 Conclusions

The Vlasov-Poisson equation is an effective technique for systems with large
number of particles. Moreover, it is sufficiently accurate for most purposes
and its computational intensity is linear to the number of particles, which
makes it effective for up very large number of particles.

Although I only looked at a few cases, there are many other problems
which it can solve. It can easily be changed to model electrostatics or fluid
dynamics.

I take the rest of the paper as references and to post the python code I
used.

5 References

http://wiki.tomabel.org
http://en.wikipedia.org/wiki/Correlation function

http://en.wikipedia.org/wiki/Vlasov equation
http://en.wikipedia.org/wiki/Eris simulation Special Thanks to Professor

Abel and Yao

6 Phython Code

6.1 Final Project Library

Library for Vlasov Poisson equation in 2D # Author: Javier Palomares
import math

from pylab import
from numpy import

12

¡codecell¿
def getParticlePositions(Ngrid):
dx = 1.0/Ngrid
x = np.arange(0,1,dx) + .5 * dx
y = np.arange(0,1,dx) + .5 * dx
r = np.zeros((Ngrid,2))
r[:,0] = x
r[:,1] = y
return r
def getUniformParticlePositions(Ngrid):
dx = 1.0/Ngrid
x = np.arange(0,1,dx) + .5 * dx
y = np.arange(0,1,dx) + .5 * dx
r = np.zeros((Ngrid*Ngrid,2))
count = 0
for i in range(Ngrid):
for j in range(Ngrid):
r[count,0] = x[i]
r[count,1] = y[j]
count += 1
return r
def array make periodic(x):
x[x¿=1.] -=1.
x[x¡0.] +=1.
def scalar make periodic(x):
while (x¡=0.):
x += 1
while (x¿=1.):
x -= 1
return x
def getFractions(r,i,Ngrid):
dx = 1.0 /Ngrid
square grids
dy = dx
x = r[i][0]
y = r[i][1]
Grids around each of the particles
left = x - .5 * dx

13

Periodic boundary conditions
#left = scalar make periodic(left);
right = left + dx
#right = scalar make periodic(right);
down = y - .5 *dx #down = scalar make periodic(down);
up = down + dx
#up = scalar make periodic(up);
x index where the particle belongs
xi = math.floor(left/dx)
fracX = left/dx - xi
#xi = np.int32(left/dx)
#fracX = np.abs(right - xi * dx)/(2*dx)
y index where the particle belongs
y increases going down.
yi = math.floor(down/dx)
fracY = down/dx - yi
return int(xi),int(yi),fracX,fracY
def makeIndicesPeriodic(xi,yi,Ngrid):
if (xi ¿ Ngrid -1):
xi = 0
elif (xi ¡ 0):
xi = Ngrid - 1
if (yi ¿ Ngrid - 1):
yi = 0
elif (yi ¡ 0):
yi = Ngrid - 1
return xi,yi
Deposits particles along the CIC algorithm
Returns the density of the grid
def CIC deposit(r,mi,Ngrid=100,periodic=1):
”””cloud in cell density estimator
”””
The size of the grid squares
dx = 1.0/Ngrid
rho = np.zeros((Ngrid,Ngrid))
Place each of the particles in the grid square they belongin
for i in arange(len(r)):
xi,yi,fracX,fracY = getFractions(r,i,Ngrid)

14

#Periodic boundary conditions
xi,yi = makeIndicesPeriodic(xi,yi,Ngrid)
x1 = xi+1
y1 = yi+1
x1,y1 = makeIndicesPeriodic(x1,y1,Ngrid)
#Update the density
mass = m[i]
rho[yi][xi] += mass*(1. - fracX)*(1. - fracY)
rho[yi][x1] += mass*fracX*(1. - fracY)
rho[y1][xi] += mass*(1. - fracX)*fracY
rho[y1][x1] += mass*fracX*fracY
#rho -= rho.mean
return rho
Returns the force at the CIC particles
def CIC force(r,Ngrid,m):
dx = 1./Ngrid
rho = CIC deposit(r,m,Ngrid)
Phi,fx,fy = PotFFT(rho,Ngrid)
the forces at the positions of the particles
fp = np.zeros((len(r),2))
For each particle, need to find the grid in which each particle belongs,

and then
take the weighted average of each point around its neighbors
for i in arange(len(r)):
xi,yi,fracX,fracY = getFractions(r,i,Ngrid);
xi,yi = makeIndicesPeriodic(xi,yi,Ngrid)
x1 = xi+1
y1 = yi+1
x1,y1 = makeIndicesPeriodic(x1,y1,Ngrid)
fp[i][0] = fx[yi][xi]*(1.-fracX)*(1.-fracY)
fp[i][0] += fx[yi][x1]*fracX*(1.-fracY)
fp[i][0] += fx[y1][xi]*(1.-fracX)*fracY
fp[i][0] += fx[y1][x1]*fracX*fracY
fp[i][1] = fy[yi][xi]*(1.-fracX)*(1.-fracY)
fp[i][1] += fy[yi][x1]*fracX*(1.-fracY)
fp[i][1] += fy[y1][xi]*(1.-fracX)*fracY
fp[i][1] += fy[y1][x1]*fracX*fracY
return fp

15

def PotFFT(d,N):
dx = 1./N
lphi = np.zeros((N,N),dtype=complex)
c = 1
setup wave-vectors and its square value
kx = np.fft.fftfreq(N) # returns the wave numbers
ky = kx.copy()
kx,ky = np.meshgrid(kx,ky)
k2 = (kx*kx+ky*ky)
delta = np.fft.fft2(d) # forward transform of density
lphi = (-c/(2.*math.pi)**2 *delta*dx**2/k2)
lphi = (-c/(2.*math.pi)**2 *delta*dx**2/sin(sqrt(k2)**2))
lphi[0,0] = 0.
fPhi = (np.fft.ifft2(lphi)).real
na = mgrid[0:N,0:N]
i = na[0]
j = na[1]
ip1 = np.remainder(na[0]+1, N)
im1 = na[0]-1
jp1 = np.remainder(na[1]+1, N)
jm1 = na[1]-1
fFx = -(fPhi[ip1,j]-fPhi[im1,j])/dx/2
fFy = -(fPhi[i,jp1]-fPhi[i,jm1])/dx/2
return fPhi, fFy, fFx
def vector make periodic(r):
array make periodic(r[:,0])
array make periodic(r[:,1])
¡codecell¿
def Evolve(r,v,m,C,Ngrid,dt,tfinal):
dx = 1./Ngrid
time = 0.
#Uniform mass
mass = m[0]
while (time ¡ tfinal):
r = r + dt/2 * v
vector make periodic(r)
f = CIC force(r,Ngrid,m)
v = v + dt * f

16

r = r + dt/2 * v
vector make periodic(r)
time += dt
return r,v
def getParticleVelocities(r):
vx = .01 * sin(2. * np.pi * r[:,0])
vy = np.copy(vx)
v = np.zeros((len(r),2))
v[:,0] = vx
v[:,1] = vy
return v
def fluidVelocities(r):
v = np.zeros((len(r),2))
for i in xrange(len(r)):
Set the y velocity to zero
v[i][1] = 0
y = r[i][1]
x velocity is +1 if the particle is in the top of the fluid # or zero else
if (y ¿ .5):
v[i][0] = -.1
else:
v[i][0] = .1
return v
def fluidMass(r):
m = np.zeros(len(r))
mi = 1./len(r)
for i in xrange(len(r)):
y = r[i][1]
if (y ¿ .5):
m[i] = 1.99* mi
else:
m[i] = .01*mi
return m
def separateFluids(r,m):
f1x = np.zeros(0)
f1y = np.zeros(0)
f2x = np.zeros(0)
f2y = np.zeros(0)

17

mi = 1./len(r)
for i in xrange(len(r)):
xi = r[i][0]
yi = r[i][1]
if(m[i] ¿ mi):
f1x = np.append(f1x,xi)
f1y = np.append(f1y,yi)
else:
f2x = np.append(f2x,xi)
f2y = np.append(f2y,yi)
fluid1 = np.zeros((len(f1x),2))
fluid2 = np.zeros((len(f2x),2))
fluid1[:,0] = f1x
fluid1[:,1] = f1y
fluid2[:,0] = f2x
fluid2[:,1] = f2y
return fluid1,fluid2
def GaussianPerturbation(r):
for i in xrange(len(r)):
r[i][0] += np.random.normal(0.0,1./100)
r[i][1] += np.random.normal(0.0,1./100)
return r
def fluidPositions(Ngrid):
dx = 1.0/Ngrid
dy = .2/Ngrid
x = np.arange(0,1,dx) + .5 * dx
y = np.arange(.4,.6,dy)
r = np.zeros((len(y)*len(x),2))
count = 0
for i in xrange(len(x)):
for j in xrange(len(y)):
r[count][0] = x[i]
r[count][1] = y[j]
count += 1
return r
def uniformVelocities(r):
v = np.zeros((len(r),2))
for i in xrange(len(r)):

18

v[i][1] = 0
y = r[i][1]
if (y ¿ .5):
v[i][0] = -.1
else:
v[i][0] = .1
return v
¡codecell¿
def radial(rmin,deltar,vi,M,N):
r = np.zeros((N,2))
v = np.zeros((N,2))
m = np.zeros(N)
deltaTheta = 2. * np.pi / N
Particles at a radial distance from the center
for i in xrange(N-1):
theta = deltaTheta * i
ri = rmin + deltar * np.random.random()
vi = (M*ri)**(-.5)
r[i][0] = .5 + ri * np.cos(theta)
r[i][1] = .5 + ri * np.sin(theta)
#v[i][0] = -ri*vi * np.sin(theta)
#v[i][1] = ri*vi * np.cos(theta)
m[i] = M
One particle at the center much more massive than
the rest with a zero velocity
r[N-1][0] = .5
r[N-1][1] = .5
m[N-1] = 10000*M
return r,v,m
¡codecell¿
Correlation function
def correlation(r):
the correlation function
corr = np.cov(r)
return the mean of the correlation
meanCorr = mean(np.reshape(corr,size(corr)))
return meanCorr

19

6.2 Final Project

Vlasov Poisson Equation in 2D
Author: Javier Palomares
execfile(”Final Project Library.py”)
Ngrid = 4
Np = Ngrid**2
r = getUniformParticlePositions(Ngrid)
v = uniformVelocities(r)
Np = Ngrid*Ngrid
m = fluidMass(r)
rho = CIC deposit(r,m,Ngrid)
plot(r[:,0],r[:,1],’r.’)
C = 1
numSteps = 180
tFinal = 50.0
dt = float(tFinal)/numSteps
plot(r[:,0],r[:,1],’r.’)
xlim(0,1)
ylim(0,1)
for i in xrange(numSteps):
r,v = Evolve(r,v,m,C,Ngrid,dt,dt)
plot(r[:,0],r[:,1],’g.’)
¡codecell¿
uniform density + m[i]*gaussian - mean
execfile(”Final Project Library.py”)
Ngrid = 100
Np = Ngrid**2
C = 1.
m = np.ones(Np)
r = getUniformParticlePositions(Ngrid)
v = np.zeros(np.shape(r))
rho = CIC deposit(r,m,Ngrid)
#GaussianPertubations
r = GaussianPerturbation(r)
v = GaussianPerturbation(v)
rho = CIC deposit(r,m,Ngrid)
numSteps = 25

20

tFinal = 25.0
dt = tFinal/numSteps
for i in xrange(numSteps):
r,v = Evolve(r,v,m,C,Ngrid,dt,dt)
if (i
figure()
rho = CIC deposit(r,m,Ngrid)
#plt.imshow(rho)
plt.plot(r[:,0],r[:,1],’.’)
corr = correlation(r)
print corr
¡codecell¿
execfile(”Final Project Library.py”)
Ngrid = 50
Np = Ngrid**2
r = fluidPositions(Ngrid)
m = fluidMass(r)
v = fluidVelocities(r)
rho = CIC deposit(r,m,Ngrid)
imshow(rho)
colorbar()
rho = CIC deposit(r,m,Ngrid)
#fluid1,fluid2 = separateFluids(r,m)
figure()
#plot(fluid1[:,0],fluid1[:,1],’r.’)
#plot(fluid2[:,0],fluid2[:,1],’g.’)
numSteps = 30
tFinal = 30.0
dt = tFinal/numSteps
for i in xrange(numSteps):
r,v = Evolve(r,v,m,C,Ngrid,dt,dt)
if (i
fluid1,fluid2 = separateFluids(r,m)
figure()
#plot(fluid1[:,0],fluid1[:,1],’r.’)
#plot(fluid2[:,0],fluid2[:,1],’g.’)
rho = CIC deposit(r,m,Ngrid)
plt.imshow(rho)

21

colorbar()
¡codecell¿
execfile(”Final Project Library.py”)
Ngrid = 200
Np = 500
rmin = .05
deltar = .1
vi = 1.
mi = 1./Np
r,v,m = radial(rmin,deltar,vi,mi,Np)
rho = CIC deposit(r,m,Ngrid)
plt.xlim(0,1)
plt.ylim(0,1)
plt.plot(r[:,0],r[:,1],’.’)
numSteps = 40
tFinal = 40.0
C = 1.
dt = tFinal/numSteps
for i in xrange(numSteps):
r,v = Evolve(r,v,m,C,Ngrid,dt,dt)
if (i
figure()
plt.xlim(0,1)
plt.ylim(0,1)
plt.plot(r[:,0],r[:,1],’.’)

22

